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Reichenbach’s Common Cause Definition on
Hilbert Lattices
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The Reichenbachian definition of the common cause is formally generalized for
the quantum case in two different ways according to two possible definitions of
the conditional probability on a Hilbert lattice, and it is shown that, unlike in the
classical case, neither of the two definitions is consistent.

1. INTRODUCTION

Given a probabilistic correlation between two events, this correlation

might be explainable in terms of a common cause. Reichenbach defines the

notion of common cause (Reichenbach, 1956) and shows that the definition
is consistent with the explicable correlation, i.e., if two events have a common

cause, then they do correlate. We summarize these results briefly in Section

2. In Sections 3 and 4 we generalize the notion of common cause to Hilbert

lattices in two different ways according to two different definitions of the

conditional probability in the quantum case, and show that the analogue of
Reichenbach’ s theorem does not hold in either case. We give counterexamples

when a common cause `cause’ correlation, anticorrelation, and indepen-

dence, respectively.

2. THE CLASSICAL CASE

Let (i) ( V , F, p) be a Kolmogorovian probability measure space and let

(ii) the conditional probability of E given F be defined as usual by

p (E | F ) 5
p(E ù F )

p(F )
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Let A, B P V be two correlating events, i.e.,

p(A ù B) . p(A )p(B) (1)

Reichenbach defines the common cause of the correlation as follows:

Definition 1. An event C is said to be the common cause of the correlation

between A and B if the events A, B, and C satisfy the following relations:

p(A ù B | C ) 5 p(A | C )p (B | C ) (2)

p(A ù B | C) 5 p(A | C)p(B | C) (3)

p (A | C ) . p(A | C) (4)

p (B | C ) . p(B | C) (5)

We denote by p( ? | C ) and p( ? | C) probabilities conditioned on C and non-

C, respectively. Now we do not investigate the question under what conditions

a common cause satisfying (2)±(5) exists. We rather turn our attention to the

question of whether the existence of a common cause really yields correlation.

The answer is given by the following:

Theorem 1 (Reichenbach, 1956). Let A, B, and C be elements of a

Kolmogorovian probability measure space and let them satisfy (2)±(5). Then

A and B correlate, i.e., they satisfy (1).

Proof. In the proof we use the following three equations:

( a ) p(A ) 5 p(C )p(A | C ) 1 p(C)p (A | C)

( b ) p(B) 5 p (C )p (B | C ) 1 p(C )p (B | C)

( g ) p(A ù B) 5 p (C )p(A | C )p(B | C ) 1 p(C)p (A | C)p (B | C)

( a ) and ( b ) are identities in a Kolmogorovi an probability measure space, ( g )
is true if (2)±(3) are true. From these relations we find by some simple

computations that

p(A ù B) 2 p(A )p(B) 5 p (C )p (C) [p(A | C ) 2 p(A | C)][ p(B | C ) 2 p(B | C)]

Because of (4)±(5) and under the assumption 0 , p(C ) , 1, we get that

p(A ù B) 2 p(A )p(B) . 0, which was to be proven. n

So our classical definition is consistent, i.e., the presence of a common

cause leads to correlation. But let us go over to the quantum case!

3. FIRST GENERALIZATION

Let (i) P(H ) be a Hilbert lattice and W be a pure state represented by

the unit vector w. For the projections E and F in the lattice let (ii) the
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conditional probability of E given F in a state W be defined in the follow-

ing way:

pw(E | F ) 5
pw(E Ù F )

pw(F )
5

Tr(W (E Ù F ))

Tr(WF )

(Now we disregard the logical and mathematical difficulties arising from this
generalization of the Bayes rule.) Let A, B P P (H) and assume a correlation

between A and B in the state W, i.e.,

pw(A Ù B) . pw(A )pw(B) (6)

We define now the common cause of the correlation in the quantum case:

Definition 2. An event C is said to be the common cause of the correlation

between A and B if the events A, B, and C satisfy the following relations:

pw(A Ù B | C ) 5 pw(A | C )pw(B | C ) (7)

pw(A Ù B | C ’ ) 5 pw(A | C ’ )pw(B | C ’ ) (8)

pw(A | C ) . pw(A | C ’ ) (9)

pw(B | C ) . pw(B | C ’ ) (10)

Now we show that the analogue of Reichenbach’ s theorem does not hold in

this case. So we claim the following:

Theorem 2. Let A, B, and C be elements of a Hilbert lattice and let them

satisfy (7)±(10). Then A and B can either correlate, i.e., pw (A ù B) .
pw(A )pw(B), or anticorrelate, i.e., pw(A ù B) , pw(A )pw(B); or be independent,

i.e., pw(A ù B) 5 pw(Apw(B).

Proof. Let P (H3) be the projection lattice of the three-dimensional real

Hilbert space H3 with the basis {x, y, z} (see Fig. 1). Let RanC be the plane

xy, RanC ’ be the axis z, RanA and RanB be two planes intersecting each
other in line x, both having an angle a with z. Let w be in the plane xz
meeting with z at an angle b .

We claim that for all a , b P (0, p /2), (7)±(10) are satisfied. The

conditional probabilities are the following:

pw(A | C ) 5
pw(A Ù C )

pw(C )
5

Tr(W (A Ù C ))

Tr(WC )
5

cos2 b
cos2 b

5 1

pw(B | C ) 5
pw(B Ù C )

pw(C )
5

Tr(W (B Ù C ))

Tr(WC )
5

cos2 b
cos2 b

5 1

pw(A Ù B | C ) 5
pw(A Ù B Ù C )

pw(C )
5

Tr(W (A Ù B Ù C ))

Tr(WC )
5

cos2 b
cos2 b

5 1
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Fig. 1. The projections A, B, and C in P(H3).

since w is in the plane xz, so its projections onto the plane xy and the axis

x are equal, and

pw(A | C ’ ) 5
pw(A Ù C ’ )

pw(C ’ )
5

Tr(W (A Ù C ’ ))

Tr(WC ’ )
5 0

pw(B | C ’ ) 5
pw(B Ù C ’ )

pw(C ’ )
5

Tr(W (B Ù C ’ ))

Tr(WC ’ )
5 0

pw(A Ù B | C ’ ) 5
pw(A Ù B Ù C ’ )

pw(C ’ )
5

Tr(W (A Ù B Ù C ’ ))

Tr(WC ’ )
5 0

since the intersections of A, B, and A Ù B with C ’ are 0-projections. By

these numbers equations (7)±(10) are satisfied:

1 5 pw(A Ù B | C ) 5 pw(A | C )pw(B | C ) 5 1

0 5 pw(A Ù B | C ’ ) 5 pw(A | C ’ )pw(B | C ’ ) 5 0

1 5 pw(A | C ) . pw(A | C ’ ) 5 0

1 5 pw(B | C ) 5 pw(B | C ’ ) 5 0

So C can be regarded as the common cause of the correlation between A
and B by the above definition.
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Fig. 2. The parameter space ( a , b ) p /2, p /2
0,0 .

Let us examine whether there exists a correlation between A and B
indeed, i.e., whether (6) is satisfied. The two sides of equation (6) are the

following:

pw(A Ù B) 5 Tr(W (A Ù B)) 5 cos2 b

pw(A )pw(B) 5 Tr(WA )Tr(WB) 5 (cos2 b 1 sin2 b cos2 a )2

In Fig. 2 we represent the relation between the two sides of (6) in the

parameter space ( a , b ) p /2, p /2
0,0 . We can see that the parameter space is divided

into two regions by a curve reaching from the line (0, a ) to the point ( p /2,
p /2) representing the places where pw(A ù B) 5 pw(A )pw(B), i.e., where the

events A and B are independent. The region `under’ the curve represents the

places where pw(A ù B) , pw(A )pw(B), i.e., where the events A and B
anticorrelate. Finally, the region `above’ the curve represents the correlating

places where pw(A ù B) . pw(A )pw(B).

So we have found an example where for two events A and B a third
event C can be chosen which can be regarded as the common cause, but A and

B do not necessarily correlate; they can anticorrelate or be independent. n

In the next section we take another definition of the common cause on

the Hilbert lattice using another definition of the conditional probability and

examine the validity of the analogue of Reichenbach’ s theorem.

4. SECOND GENERALIZATION

Let (i) P(H ) be a Hilbert lattice and W be a pure state determined by

the unit vector w. For the projections E and F in the lattice let (ii) the
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conditional probability of E given F in a state W be defined in the follow-

ing way:

pw(E | F ) 5
Tr(FWFE )

Tr(FWF )

The motivation of this definition comes from the theory of measurement.
If we carry out a measurement of an observable represented by the projection

F in a pure state W, then the state transforms as follows:

W j
FWF

Tr(FWF )

It can be easily seen that the new state is pure again. Let us introduce the

following notation for the new pure state: WF [ EWF/Tr(FWF ). The W j

WF transformation can be regarded as the `renormalized projection’ of the

state W onto the subspace RanF. This rule is due to LuÈ ders (1951; Bub 1979).
Using the above notation, now we are able to define the common cause in

terms of this new conditional probability: Let A, B P P (H ) and let there be

a correlation between A and B in the state IV, i.e.,

pw(A Ù B) . pw(A )pw(B) (11)

Definition 3. An event C is said to be the common cause of the correlation

between A and B if the events A, B, and C satisfy the following relations:

Tr(WC(A Ù B)) 5 Tr(WCA )Tr(WCB) (12)

Tr(WC
’ (A Ù B)) 5 Tr(WC

’ A )Tr(WC
’ B) (13)

Tr(WCA ) . Tr(WC
’ A ) (14)

Tr(WCB) . Tr(WC
’ B) (15)

Now we ask again whether A and B correlate, provided there exists a third

event C such that conditions (12)±(15) hold. The answer is again negative.

Theorem 3. Let A, B, and C be elements of a Hilbert lattice and let them

satisfy (12)±(15). Then A and B do not necessarily correlate.

Proof. In the proof we give a rather technical counterexample which

satisfies (12)±(15), but does not satisfy (11). Let us take the same three-

dimensional Hilbert lattice P (H3) as before with the basis {x, y, z} (see Fig.
3). Since in equations (12)±(15) C and C 1 do not appear explicitly, in the

first step we do not determine these projections; instead we search for two

unit perpendicular vectors wc and wC
’ which satisfy (12)±(15), and at the

end we return to the projections. Let RanA and RanB be two planes satisfy
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p

Fig. 3. The position of wC and wC ’ in P (H3).

(12)±(15), and at the end we return to the projections. Let RanA and RanB
be two planes intersecting each other in x meeting with z at an angle a . By

Fig. 2 there uniquely exists a vector v in the plane xz for which pv (A Ù B)
5 pv(A )pv(B). Let this vector v be wC ’ , so (13) is satisfied.

Our task is now to find a vector wC perpendicular to wC
’ so that (12)

and (14)±(15) are satisfied. The last two inequalities can be satisfied as

follows: Let a tend to p /2, i.e., let RanA and RanB tend to the plane xy.
Then by Fig. 2, b also tends to p /2, i.e., wC ’ tends to the axis z. Let us

denote the plane perpendicular to wC
’ by S. Now this plane is infinitesimally

close to the plane xy and to RanA and RanB. From all this it these follows

that for arbitrarily small e 1 and e 2 we can choose a d so that for any a for

which | p /2 2 a | , d , pwC

’
(A) 5 pwC

’
(B) , e 1( d ), and for every vector u

in the plane S, pu(A ) . 1 2 e 2( d ), pu(B) . 1 2 e 2( d ). So (14)±(15) are

satisfied for every u in S.
Now let’ s pick out the vector from the plane S which satisfies also (12).

Instead of searching for a vector wC satisfying pwC (A Ù B) 5 pwC

(A )pwC (B), we pick out two other vectors w8 and w9 for which inequalities

hold with the opposite sign, i.e., pw8 (A Ù B) . pw8 (A ) pw8 (B) and pw9 (A
Ù B) , pw9 (A ) pw9 (B). Let w8 be the vector determined by the intersection

of the planes xz and S. In Fig. 2 we can see that w8 is in the correlating
region, so for w8, pw8 (A Ù B) . pw8 (B). Let the other vector w9 be determined

by the intersection of the planes yz and S which is the axis y itself. For w9,
pw9 (A Ù B) 5 0, since w9 ’ A Ù B, but pw8 (A) Þ 0 and pw8 (B) Þ 0, so

pw9 (A Ù B) , pw9 (B). Now let us use the continuity of the pu( ? ) function

on the plane S. If there is a vector w8 for which pw8(A Ù B) . pw8(A )
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Fig. 4. The position of w in P (H3).

pw8(B) and a vector w9 for which pw9(A Ù B) , pw9(A ) pw9(B), then there

must be a vector between them in the plane S for which pw(A Ù B) 5
pw(A)pw(B ). Let this vector be wC , so (12) is fulfilled.

So we have found two vectors wC and wC ’ for which (12)±(15) are
satisfied. What are the projections C and C ’ , and what is the original w
vector? Let C be the projection for which RanC is the plane S, and let C ’

be the projection determined by wC
’ . Then w can be any of the vectors in

the plane T spanned by wC and wC
’ except for w8 and w9.

Now let us choose a possible w for which independence or anticorrelation
happens. Let w be the vector determined by the intersection of the planes yz
and T (see Fig. 4). For w, pw(A Ù B) 5 0, since w is in the plane yz. Now

there are two possibilities: In the case that pw(B) 5 0 or pw(A ) 5 0, then

pw(A Ù B) 5 pw(A )pw(B), i.e., A and B are independent; in the case that pw(B)

Þ 0 and pw(A ) Þ 0, then pw(A Ù B) , pw(A )pw(B), i.e., A and B anticorrelate.

So our counter example satisfies (12)±(15), but not (11), and this was to
be proven. n

So the consistency does not hold for either of the two definitions of the
common cause in the quantum case.
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